
MPLAB® XC8 USER’S GUIDE

FOR EMBEDDED ENGINEERS

MPLAB® XC8 User’s Guide for Embedded Engineers
INTRODUCTION

This document presents five code examples for 8-bit devices and the MPLAB XC8 C
compiler. Some knowledge of microcontrollers and the C programming language is
necessary.

1. Turn LEDs On or Off

2. Flash LEDs Using _delay() Function

3. Count Up on LEDs Using Interrupts as Delay

4. Display Potentiometer Values on LEDs Using A/D

5. Display EEPROM Data Values on LEDs

A Run Code in MPLAB X IDE

B Get Software and Hardware
 2015 Microchip Technology Inc. DS50002400A-page 1

MPLAB® XC8 User’s Guide for Embedded Engineers
1. TURN LEDS ON OR OFF

This example will light alternate LEDs on the Explorer 8 board with a PIC16F1719
microcontroller (MCU). For more information, see Section B. “Get Software and
Hardware”.

#include <xc.h>

// PIC16F1719 Configuration Bit Settings

// For more on Configuration Bits,
// consult your device data sheet

// CONFIG1
#pragma config FOSC = ECH // External Clock, 4-20 MHz
#pragma config WDTE = OFF // Watchdog Timer (WDT) disabled
#pragma config PWRTE = OFF // Power-up Timer disabled
#pragma config MCLRE = ON // MCLR/VPP pin function is MCLR
#pragma config CP = OFF // Flash Memory Code Protection off
#pragma config BOREN = ON // Brown-out Reset enabled
#pragma config CLKOUTEN = OFF // Clock Out disabled.
#pragma config IESO = ON // Internal/External Switchover on
#pragma config FCMEN = ON // Fail-Safe Clock Monitor enabled

// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protect off
#pragma config PPS1WAY = ON // PPS one-way control enabled
#pragma config ZCDDIS = ON // Zero-cross detect disabled
#pragma config PLLEN = OFF // Phase Lock Loop disable
#pragma config STVREN = ON // Stack Over/Underflow Reset enabled
#pragma config BORV = LO // Brown-out Reset low trip point
#pragma config LPBOR = OFF // Low-Power Brown Out Reset disabled
#pragma config LVP = OFF // Low-Voltage Programming disabled

void main(void) {

 unsigned char portValue = 0x05;

 // Port D access

 ANSELD = 0x0; // set to digital I/O (not analog)
 TRISD = 0x0; // set all port bits to be output
 LATD = portValue; // write to port latch - RD[0:3] = LED[0:3]

 // Port B access
 ANSELB = 0x0; // set to digital I/O (not analog)
 TRISB = 0x0; // set all port bits to be output
 LATB = portValue; // write to port latch - RB[0:3] = LED[4:7]

 return;
}

1.1 Header File <xc.h>

This header file allows code in the source file to access compiler- or device-specific fea-
tures. This and other header files may be found in the MPLAB XC8 installation directory
in the include subdirectory.

Based on your selected device, the compiler will set macros that allow xc.h to vector
to the correct device-specific header file. Do not include a device-specific header in
your code or your code will not be portable.

see Section 1.1

see Section 1.2

see Section 1.3
DS50002400A-page 2  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
1.2 Configuration Bits

Microchip devices have configuration registers with bits that enable and/or set up
device features.

WHICH CONFIGURATION BITS TO SET

In particular, you need to look at:

• Oscillator selection - This must match your hardware’s oscillator circuitry. If this
is not correct, the device clock may not run. Typically, development boards use
high-speed crystal oscillators. From the example code:
#pragma config FOSC = ECH

• Watchdog timer- It is recommended that you disable this timer until it is required.
This prevents unexpected Resets. From the example code:
#pragma config WDTE = OFF

• Code protection - Turn off code protection until it is required. This ensures that
device memory is fully accessible. From the example code:
#pragma config CP = OFF

Different configuration bits may need to be set up to use another 8-bit device (rather
than the PIC16F1719 MCU used in this example). See your device data sheet for the
number and function of corresponding configuration bits. Use the part number to
search http://www.microchip.com for the appropriate data sheet.

For more about configuration bits that are available for each device, see the following
file in the location where MPLAB XC8 was installed:

MPLAB XC8 Installation Directory/docs/chips

HOW TO SET CONFIGURATION BITS

In MPLAB X IDE, you can use the Configuration Bits window to view and set these bits.
Select Window>PIC Memory Views>Configuration Bits to open this window.

FIGURE 1: CONFIGURATION WINDOW

Once you have the settings you want, click Generate Source Code to Output and
then copy the pragma directives from the Output window into your code, as was done
in the example code.

Note: If you do not set Configuration bits correctly, your device will not operate at
all or at least not as expected.
 2015 Microchip Technology Inc. DS50002400A-page 3

http://www.microchip.com

MPLAB® XC8 User’s Guide for Embedded Engineers
1.3 Port Access

Digital I/O device pins may be multiplexed with peripheral I/O pins. To ensure that you
are using digital I/O only, disable the other peripheral(s). Do this by using the pre-
defined C variables that represent the peripheral registers and bits. These variables are
listed in the device-specific header file in the compiler include directory. To determine
which peripherals share which pins, refer to your device data sheet.

For the example in this section, Port D and Port B pins are multiplexed with peripherals
that are disabled by default. The only issue is that the pins default to analog so you will
need to set them to digital I/O. For Port D:

ANSELD = 0x0; // set to digital I/O (not analog)

A device pin is connected to either a digital I/O port (PORT) or latch (LAT) register in the
device. For the example, LATD and LATB are used. The variable portValue is
assigned a value that is used on both latches. For Port D:

LATD = portValue; // write to port latch - RD[0:3] = LED[0:3]

In addition, there is a register for specifying the directionality of the pin - either input or
output - called a TRIS register. For the example in this section, TRISD and TRISB are
used. Setting a bit to 0 makes the pin an output, and setting a bit to 1 makes the pin an
input. For Port D:

TRISD = 0x0; // set all port bits to be output
DS50002400A-page 4  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
2. FLASH LEDs USING _delay() FUNCTION

This example is a modification of the previous code. Instead of just turning on LEDs,
this code will flash alternating LEDs.

#include <xc.h>

// PIC16F1719 Configuration Bit Settings
// For more on Configuration Bits, consult your device data sheet

// CONFIG1
#pragma config FOSC = ECH // External Clock, 4-20 MHz
#pragma config WDTE = OFF // Watchdog Timer (WDT) disabled
#pragma config PWRTE = OFF // Power-up Timer disabled
#pragma config MCLRE = ON // MCLR/VPP pin function is MCLR
#pragma config CP = OFF // Flash Memory Code Protection off
#pragma config BOREN = ON // Brown-out Reset enabled
#pragma config CLKOUTEN = OFF // Clock Out disabled.
#pragma config IESO = ON // Internal/External Switchover on
#pragma config FCMEN = ON // Fail-Safe Clock Monitor enabled

// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protect off
#pragma config PPS1WAY = ON // PPS one-way control enabled
#pragma config ZCDDIS = ON // Zero-cross detect disabled
#pragma config PLLEN = OFF // Phase Lock Loop disable
#pragma config STVREN = ON // Stack Over/Underflow Reset enabled
#pragma config BORV = LO // Brown-out Reset low trip point
#pragma config LPBOR = OFF // Low-Power Brown Out Reset disabled
#pragma config LVP = OFF // Low-Voltage Programming disabled

void main(void) {

unsigned char portValue;

 // Port D access
 ANSELD = 0x0; // set to digital I/O (not analog)
 TRISD = 0x0; // set all port bits to be output

 // Port B access
 ANSELB = 0x0; // set to digital I/O (not analog)
 TRISB = 0x0; // set all port bits to be output

 while(1) {

 portValue = 0x05;
 LATD = portValue; // write to port latch - RD[0:3] = LED[0:3]
 LATB = portValue; // write to port latch - RB[0:3] = LED[4:7]

 // delay value change

 _delay(25000); // delay in instruction cycles

 portValue = 0x0A;
 LATD = portValue; // write to port latch - RD[0:3] = LED[0:3]]
 LATB = portValue; // write to port latch - RB[0:3] = LED[4:7]
 _delay(25000); // delay in instruction cycles

 }
 return;
}

see Section 2.1

see Section 2.2
 2015 Microchip Technology Inc. DS50002400A-page 5

MPLAB® XC8 User’s Guide for Embedded Engineers
2.1 The while() Loop and Variable Values

To make the LEDs on Port D and Port B change, a variable portValue is assigned a
value in the first part of the loop, and a complementary value in the second part of the
loop. To perform the loop, while(1) { } was used.

2.2 The _delay() Function

Because the speed of execution will, in most cases, cause the LEDs to flash faster than
the eye can see, execution needs to be slowed. _delay()is a built-in function of the
compiler.

For more details on the delay built-in, see the MPLAB XC8 C Compiler User’s Guide
(DS50002053).
DS50002400A-page 6  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
3. COUNT UP ON LEDs USING INTERRUPTS AS DELAY

This example is a modification of the previous code. Although the delay loop in the pre-
vious example was useful in slowing down loop execution, it created dead time in the
program. To avoid this, a timer interrupt can be used.

#include <xc.h>

// PIC16F1719 Configuration Bit Settings
// For more on Configuration Bits, consult your device data sheet

// CONFIG1
#pragma config FOSC = ECH // External Clock, 4-20 MHz
#pragma config WDTE = OFF // Watchdog Timer (WDT) disabled
#pragma config PWRTE = OFF // Power-up Timer disabled
#pragma config MCLRE = ON // MCLR/VPP pin function is MCLR
#pragma config CP = OFF // Flash Memory Code Protection off
#pragma config BOREN = ON // Brown-out Reset enabled
#pragma config CLKOUTEN = OFF // Clock Out disabled.
#pragma config IESO = ON // Internal/External Switchover on
#pragma config FCMEN = ON // Fail-Safe Clock Monitor enabled

// CONFIG2
#pragma config WRT = OFF // Flash Memory Self-Write Protect off
#pragma config PPS1WAY = ON // PPS one-way control enabled
#pragma config ZCDDIS = ON // Zero-cross detect disabled
#pragma config PLLEN = OFF // Phase Lock Loop disable
#pragma config STVREN = ON // Stack Over/Underflow Reset enabled
#pragma config BORV = LO // Brown-out Reset low trip point
#pragma config LPBOR = OFF // Low-Power Brown Out Reset disabled
#pragma config LVP = OFF // Low-Voltage Programming disabled

// Interrupt function

void interrupt isr(void){
// only process Timer0-triggered interrupts
if(INTCONbits.TMR0IE && INTCONbits.TMR0IF) {

 // static variable for permanent storage duration
 static unsigned char portValue;
 // write to port latches
 LATD = portValue++; // RD[0:3] = LED[0:3]
 LATB = (portValue++ >> 4); // RB[0:3] = LED[4:7]
 // clear this interrupt condition
 INTCONbits.TMR0IF = 0;

}
}

void main(void){

 // Port D access
 ANSELD = 0x0; // set to digital I/O (not analog)
 TRISD = 0x0; // set all port bits to be output

 // Port B access
 ANSELB = 0x0; // set to digital I/O (not analog)
 TRISB = 0x0; // set all port bits to be output

see Section 3.1
 2015 Microchip Technology Inc. DS50002400A-page 7

MPLAB® XC8 User’s Guide for Embedded Engineers
 // Timer0 setup

 OPTION_REG = 0xD7; // timer 0 internal clock, prescaler 1:256
 INTCONbits.TMR0IE = 1; // enable interrupts for timer 0
 ei(); // enable all interrupts

 while(1);

return;
}

3.1 The Interrupt Function isr()

Functions are made into interrupt functions by using the interrupt specifier. As this
one interrupt function may have to handle multiple interrupt sources, code was added
to ensure the counter portValue is only incremented if Timer0 generated the inter-
rupt.

3.2 Timer0 Setup

Code also needs to be added to the main routine to enable and set up the timer, enable
timer interrupts, and change the latch assignment, now that the variable value changes
are performed in the interrupt service routine.

To enable all interrupts, ei() is used, defined in xc.h.

see Section 3.2
DS50002400A-page 8  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
4 DISPLAY POTENTIOMETER VALUES ON LEDS USING A/D

This example uses the same device and the Port B and Port D LEDs as the previous
example. However, in this example values from a potentiometer on the demo board
provide A/D input through Port A that is converted and displayed on the LEDs.

Instead of generating code by hand, the MPLAB Code Configurator (MCC) is used. The
MCC is a plug-in available for installation under the MPLAB XIDE menu Tools>Plugins,
Available Plugins tab. See MPLAB X IDE Help for more on how to install plugins.

For information on the MCC, including the MPLAB® Code Configurator User’s Guide
(DS40001725), go to the MPLAB Code Configurator web page at:

http://www.microchip.com/code_configurator

For this example, the MCC GUI was set up as shown in the following graphics.

FIGURE 2: ADC PROJECT RESOURCES
 2015 Microchip Technology Inc. DS50002400A-page 9

http://www.microchip.com/code_configurator

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 3: ADC SYSTEM PROJECT RESOURCE CONFIGURATION
DS50002400A-page 10  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 4: ADC PROJECT RESOURCE CONFIGURATION

FIGURE 5: ADC PROJECT RESOURCE PIN SELECTION AND PIN TABLE
 2015 Microchip Technology Inc. DS50002400A-page 11

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 6: ADC GPIO PROJECT RESOURCE CONFIGURATION

FIGURE 7: ADC GPIO PROJECT RESOURCE PIN SELECTION
DS50002400A-page 12  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 8: ADC GPIO PROJECT RESOURCE PIN TABLE
 2015 Microchip Technology Inc. DS50002400A-page 13

MPLAB® XC8 User’s Guide for Embedded Engineers
When the code is configured as shown in the previous figures, click the Generate
Code button on the MCC tab. Code generated by the MCC is modular. Therefore main,
system and peripheral code are all in individual files. Also, each peripheral has its own
header file.

FIGURE 9: ADC PROJECT TREE FOR CODE GENERATED BY MCC

Editing of main.c is always required to add functionality to your program. Review the
generated files to find any functions or macros you may need in your code.

Note: After you create a main project, you can either add a main.c template file
before using MCC or you can let MCC add main.c for you.
DS50002400A-page 14  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
4.1 main.c Modified Code

The main.c template file has been edited as shown below. Some comments have
been removed as described in < >. Code added to main() is in red.

/**
 Generated Main Source File

<See generated main.c file for file information.>
 */

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc.
All rights reserved.

<See generated main.c file for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"

/*
 Main application
 */
void main(void) {
 // initialize the device
 SYSTEM_Initialize();

 // <No interrupts used - see generated main.c file for code.>

 while (1) {

 // Start A/D conversion

 ADC_StartConversion(channel_AN0);

 // Wait for ADC to complete

 while(!ADC_IsConversionDone());

 // Write to Port Latches

 LATD = ADRESH; // RD[0:3] = LED[0:3]
 LATB = (ADRESH >> 4); // RB[0:3] = LED[4:7]

 }
}
/**
 End of File
 */

4.2 Start A/D Conversion

From the adc.c module, use the function:

void ADC_StartConversion(adc_channel_t channel)

The variable channel is of typedef adc_channel_t defined in adc.h. For this
example, pot input is on RA0, so select channel_AN0.

see Section 4.2

see Section 4.3

see Section 4.4
 2015 Microchip Technology Inc. DS50002400A-page 15

MPLAB® XC8 User’s Guide for Embedded Engineers
4.3 Wait for ADC to compete

From the adc.c module, use the function:

bool ADC_IsConversionDone()

This function returns the negated value of the ADCON0bits.GO_nDONE bit (defined in
the device header file). However, the actual value of this bit is desired in the main
while loop, so the return value is negated again.

4.4 Write to Port Latches

As only 8 LEDs are available, just the value from ADRESH is displayed. The lower bits
are displayed via LATD on LEDs 0 through 3, and the upper bits are shifted so they can
be displayed via LATB on LEDs 4 through 7.
DS50002400A-page 16  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
5. DISPLAY EEPROM DATA VALUES ON LEDS

This example uses another Microchip device, the PIC16F1939 MCU, to demonstrate
how to write to and read from EEPROM Data (EEData). Read values are displayed on
Port D and Port B LEDs.

Again, MPLAB Code Configurator (MCC) is used to generate most of the code. To find
out how to install and get the user’s guide for MCC, see:
Section 4 “Display Potentiometer Values on LEDs Using A/D”.

For this example, the MCC GUI was set up as shown in the following graphics.

FIGURE 10: EEDATA PROJECT RESOURCES
 2015 Microchip Technology Inc. DS50002400A-page 17

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 11: EEDATA SYSTEM PROJECT RESOURCE CONFIGURATION
DS50002400A-page 18  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 12: EEDATA MEMORY PROJECT RESOURCE CONFIGURATION

FIGURE 13: EEDATA GPIO PROJECT RESOURCE CONFIGURATION
 2015 Microchip Technology Inc. DS50002400A-page 19

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 14: EEDATA GPIO PROJECT RESOURCE PIN SELECTION
DS50002400A-page 20  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
FIGURE 15: EEDATA GPIO PROJECT RESOURCE PIN TABLE
 2015 Microchip Technology Inc. DS50002400A-page 21

MPLAB® XC8 User’s Guide for Embedded Engineers
After your code is configured as shown in the previous figures, click the Generate
Code button on the MCC tab. Code generated by the MCC is modular. Therefore main,
system, and peripheral code are all in individual files. Also, each peripheral has its own
header file.

FIGURE 16: EEDATA PROJECT TREE FOR CODE GENERATED BY MCC

Editing of main.c is always required to add functionality to your program. Review the
generated files to find any functions or macros you may need in your code.

Note: After you create a main project, you can either add a main.c template file
before using MCC or you can let MCC add main.c for you.
DS50002400A-page 22  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
5.1 main.c Modified Code

The main.c template file has been edited as shown below. Some comments have
been removed as described in < >. Code added is in red.

/**
 Generated Main Source File

<See generated main.c file for file information.>
 */

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc.
All rights reserved.

<See generated main.c file for additional copyright information.>
 */

#include "mcc_generated_files/mcc.h"

#define NUM_EE_VALUES 64

/*
 Main application
 */
void main(void) {
 // initialize the device
 SYSTEM_Initialize();

 // <No interrupts used - see generated main.c file for code.>

 // Declare RAM array, loop variable

 volatile unsigned char RAMArray[NUM_EE_VALUES];
 unsigned char i;

 // Write initial values to EEPROM Data
 PIR2bits.EEIF = 0x0; // clear write flag

 for(i=0; i<NUM_EE_VALUES; i++){
 DATAEE_WriteByte(_EEADRL_EEADRL_POSN + i, i);
 while(!PIR2bits.EEIF); // check for write finished
 PIR2bits.EEIF = 0x0;
 }

 while(1){
 // Read from EEPROM and display
 for(i=0; i<NUM_EE_VALUES; i++){
 RAMArray[i] = DATAEE_ReadByte(_EEADRL_EEADRL_POSN + i);
 LATD = RAMArray[i]; // RD[0:3] = LED[0:3]
 LATB = (RAMArray[i] >> 4); // RB[0:3] = LED[4:7]
 _delay(25000);
 }

 // Write to EEPROM in reverse order
 for(i=0; i<NUM_EE_VALUES; i++){
 DATAEE_WriteByte(_EEADRL_EEADRL_POSN +
 (NUM_EE_VALUES - 1) - i, RAMArray[i]);
 while(!PIR2bits.EEIF); // check for write finished
 PIR2bits.EEIF = 0x0;
 }

see Section 5.2

see Section 5.3

see Section 5.4
 2015 Microchip Technology Inc. DS50002400A-page 23

MPLAB® XC8 User’s Guide for Embedded Engineers
 };

}
/**
 End of File
 */

5.2 EEData Associated Variables

Variables used to store data from an EEData read or write must match the types spec-
ified in the read/write function prototype, referenced from mcc.h and found in
memory.h:

void DATAEE_WriteByte(uint8_t bAdd, uint8_t bData);
uint8_t DATAEE_ReadByte(uint8_t bAdd);

From stdint.h (also referenced), uint8_t is the same as unsigned char.

5.3 Write to EEData

EEData is written twice in this example: first to initialize values in EEData memory and
second to change the data for dynamic display.

Writing to EEData takes more than one cycle, so a write-complete flag is used to deter-
mine when the write is done (PIR2bits.EEIF). The flag is cleared initially, and again,
after each time the write completes. (This flag must be cleared in software.)

5.4 Read from EEData

After EEData is written, memory values are read into a RAM array and then displayed
on Port D and Port B LEDs. The values in the RAM array are used in this write loop to
change the values in EEData memory.

Because the speed of execution will, in most cases, cause the LEDs to flash faster than
the eye can see, the _delay() function is used again (as in Example 2) to slow
execution.
DS50002400A-page 24  2015 Microchip Technology Inc.

MPLAB® XC8 User’s Guide for Embedded Engineers
A. RUN CODE IN MPLAB X IDE

First, create a project:

1. Launch MPLAB X IDE.

2. From the IDE, launch the New Project Wizard (File>New Project).

3. Follow the screens to create a new project:

a) Choose Project: Select “Microchip Embedded”, and then select
“Standalone Project”.

b) Select Device: Select the example device.

c) Select Header: None.

d) Select Tool: Select your hardware debug tool, SNxxxxxx. If you do not see
a serial number (SN) under your debug tool name, ensure that your debug
tool is correctly installed. See your debug tool documentation for details.

e) Select Plugin Board: None.

f) Select Compiler: Select XC8 (latest version number) [bin location]. If you
do not see a compiler under XC8, ensure the compiler is correctly installed
and that MPLAB X IDE is aware of it (Tools>Options, Embedded button,
Build Tools tab). See MPLAB XC8 and MPLAB X IDE documentation for
details

g) Select Project Name and Folder: Name the project.

Now, create a file to hold the example code:

1. Right click on the project name in the Projects window. Select New>Empty FIle.
The New Empty File dialog will open.

2. Under “File name”, enter a name.

3. Click Finish.

4. Cut and paste the example code from this user’s guide into the empty editor
window and select File>Save.

Build, download to a device, and execute the code by selecting to Debug Run your
code. You will see every other LED lit on the demo board. Click Halt to end execution.

FIGURE 17: TOOLBAR ICONS

DEBUG RUN HALT
 2015 Microchip Technology Inc. DS50002400A-page 25

MPLAB® XC8 User’s Guide for Embedded Engineers
B. GET SOFTWARE AND HARDWARE

For the MPLAB XC8 projects in this document, the Explorer 8 board with either a
PIC16F1719 or PIC16F1939 MCU is powered from a 9V external power supply and
uses standard (ICSP™) communications. MPLAB X IDE was used for development.

B.1 Get MPLAB X IDE and MPLAB XC8 C Compiler

MPLAB X IDE can be found at:

http://www.microchip.com/mplabx

The MPLAB XC8 C compiler can be found at:

http://www.microchip.com/mplabxc

B.2 Get PIC® MCUs

The PIC MCUs used in the examples are available at:

http://www.microchip.com/PIC16F1719

http://www.microchip.com/PIC16F1939

B.3 Set Up the Explorer 8 Board

The Explorer 8 development board is available at:

http://www.microchip.com/explorer8

Jumpers were set up as shown in the following tables.

B.4 Get Microchip Debug Tools

Emulators and Debuggers may be found on the Development Tools web page:

http://www.microchip.com/devtools

TABLE 1-1: JUMPER SELECTS FOR PROJECTS

Jumper Selection Description

J2 BRD+5V Power board from power supply (not USB)

J14 +5V Device Power level

J24 Open +5V used (not 3.3V)

J7 Closed Enable LEDs on Port D <RD0:3>

J21 Closed Enable LEDs on Port B <RB0:3>

J36 OSC1 to RA7 OSC1 CLKIN (8MHz External Oscillator)

J37 OSC2 to RA6 OSC2 CLKOUT (8MHz External Oscillator)

J51 PGD to RB7 ICSPDAT

J52 PGC to RB6 ISCPCLK

TABLE 1-2: JUMPER SELECTS NOT USED

Jumper Selection Description

JP2 Closed LCD not used

J22, J23, J53, J54 Open LCD not used

J15, J16 Open Digilent Pmod™ Connectors not used

J43, J44, J45, J46, J47 Open mikroBUS not used

J41, J42, J48, J49, J50 Open mikroBUS not used

J4, J31 VCAP RA5, RA4 not used
DS50002400A-page 26  2015 Microchip Technology Inc.

http://www.microchip.com/mplabxc
http://www.microchip.com/PIC16F1719
http://www.microchip.com/PIC16F1939
http://www.microchip.com/explorer8
http://www.microchip.com/devtools
http://www.microchip.com/mplabx

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2015 Microchip Technology Inc.

QUALITY	MANAGEMENT		SYSTEM	
CERTIFIED	BY	DNV	

== ISO/TS	16949	==	
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2015, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

ISBN: 978-1-63277-613-6
DS50002400A-page 27

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS50002400A-page 28  2015 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

07/14/15

http://support.microchip.com
http://www.microchip.com

	MPLAB XC8 User's Guide for Embedded Engineers
	Introduction

	1. Turn LEDs On or Off
	1.1 Header File <xc.h>
	1.2 Configuration Bits
	1.3 Port Access

	2. Flash LEDs Using _delay() Function
	2.1 The while() Loop and Variable Values
	2.2 The _delay() Function

	3. Count Up on LEDs Using Interrupts as Delay
	3.1 The Interrupt Function isr()
	3.2 Timer0 Setup

	4 Display Potentiometer Values on LEDs Using A/D
	4.1 main.c Modified Code
	4.2 Start A/D Conversion
	4.3 Wait for ADC to compete
	4.4 Write to Port Latches

	5. Display EEPROM Data Values on LEDs
	5.1 main.c Modified Code
	5.2 EEData Associated Variables
	5.3 Write to EEData
	5.4 Read from EEData

	Worldwide Sales and Service

